首页> 外文OA文献 >Into the bowels of depression: unravelling medical symptoms associated with depression by applying machine-learning techniques to a community based population sample
【2h】

Into the bowels of depression: unravelling medical symptoms associated with depression by applying machine-learning techniques to a community based population sample

机译:进入抑郁症的大肠:通过将机器学习技术应用于基于社区的人群样本,揭示与抑郁症有关的医学症状

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

BACKGROUND: Depression is commonly comorbid with many other somatic diseases and symptoms. Identification of individuals in clusters with comorbid symptoms may reveal new pathophysiological mechanisms and treatment targets. The aim of this research was to combine machine-learning (ML) algorithms with traditional regression techniques by utilising self-reported medical symptoms to identify and describe clusters of individuals with increased rates of depression from a large cross-sectional community based population epidemiological study. METHODS: A multi-staged methodology utilising ML and traditional statistical techniques was performed using the community based population National Health and Nutrition Examination Study (2009-2010) (N = 3,922). A Self-organised Mapping (SOM) ML algorithm, combined with hierarchical clustering, was performed to create participant clusters based on 68 medical symptoms. Binary logistic regression, controlling for sociodemographic confounders, was used to then identify the key clusters of participants with higher levels of depression (PHQ-9≥10, n = 377). Finally, a Multiple Additive Regression Tree boosted ML algorithm was run to identify the important medical symptoms for each key cluster within 17 broad categories: heart, liver, thyroid, respiratory, diabetes, arthritis, fractures and osteoporosis, skeletal pain, blood pressure, blood transfusion, cholesterol, vision, hearing, psoriasis, weight, bowels and urinary. RESULTS: Five clusters of participants, based on medical symptoms, were identified to have significantly increased rates of depression compared to the cluster with the lowest rate: odds ratios ranged from 2.24 (95% CI 1.56, 3.24) to 6.33 (95% CI 1.67, 24.02). The ML boosted regression algorithm identified three key medical condition categories as being significantly more common in these clusters: bowel, pain and urinary symptoms. Bowel-related symptoms was found to dominate the relative importance of symptoms within the five key clusters. CONCLUSION: This methodology shows promise for the identification of conditions in general populations and supports the current focus on the potential importance of bowel symptoms and the gut in mental health research.
机译:背景:抑郁症通常与许多其他躯体疾病和症状并存。鉴定具有合并症的人群可能揭示新的病理生理机制和治疗目标。这项研究的目的是通过利用自我报告的医学症状,将机器学习(ML)算法与传统回归技术相结合,以基于大型横断面社区的人群流行病学研究来识别和描述抑郁症患病率上升的人群。方法:使用基于语言学习和传统统计技术的多阶段方法,使用基于社区的人群全国健康与营养检查研究(2009-2010年)进行(N = 3,922)。使用自组织映射(SOM)ML算法,结合层次聚类,基于68种医学症状创建参与者聚类。然后使用二元逻辑回归分析(控制社会人口统计学混杂因素)来识别抑郁水平较高(PHQ-9≥10,n = 377)的参与者的关键群体。最终,运行了多元加性回归树增强的ML算法,以识别17个主要类别中每个关键簇的重要医学症状:心脏,肝脏,甲状腺,呼吸道,糖尿病,关节炎,骨折和骨质疏松症,骨骼疼痛,血压,血液输血,胆固醇,视力,听力,牛皮癣,体重,肠和尿液。结果:根据医学症状,与最低组相比,发现五组参与者的抑郁症患病率显着增加:优势比从2.24(95%CI 1.56,3.24)到6.33(95%CI 1.67) ,24.02)。 ML增强回归算法确定了以下三个主要疾病类别,它们在这些人群中更为常见:肠,疼痛和泌尿症状。发现与肠相关的症状在五个关键组中占症状相对重要性的主导地位。结论:这种方法显示了在普通人群中识别疾病的希望,并支持当前对肠道症状和肠道在心理健康研究中潜在重要性的关注。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号